Skip to main content

Howdy Modi: India PM receives applause for changing Kashmir status

Howdy Modi: India PM receives applause for changing Kashmir status


india pm, modi, kashmir, status, article 370, howdy modi, america, us

The entire audience of 50,000 stood up and applauded in unison.

With US President Donald Trump listening keenly, Prime Minister Narendra Modi on Sunday said India had bid "farewell" to Article 370 that went against people-centric development in Jammu and Kashmir.
"What India has done (revoking Article 370), there are some people who have trouble over it, they are themselves unable to even take care of their own country."
"The time has come for a definite fight against terrorism. I want to state with emphasis that in this fight President Trump is with us strongly in the fight against terrorism, and he has shown his determination to fight against terrorism," PM Modi said, and asked the audience to stand up and give a standing ovation to the US President.
The entire audience of 50,000 stood up and applauded in unison.
Raising the issue of the revocation of Article 370, with Pakistan set to raise it in the UN General Assembly, Modi said that for the past 70 years it was proving to be a hamper to development.
"For 70 years, it was proving a big challenge that India has given a farewell to. It kept people away from the benefits of development, and from equality, and it was being used by separatists. And the Constitution that is for the rest of India is now also for Jammu and Kashmir and Ladakh. All the discrimination that women, children and Dalits were facing, has been ended."
Modi said the legislation for the purpose was passed with two-thirds majority in both houses of Parliament, including the upper house where his government did not have majority, and the proceedings were telecast.
He asked the entire cheering audience to give a standing ovation to the Parliament for its move. "I want all of you to give a standing ovation for this," he said and the 50,000 crowd of Indian-Americans stood up, cheering and chanting "Modi, Modi", as the US President and a host of US Congressmen watched.
The standing ovation was also a move to bring home to the US President and the Congressmen the wide support that the revocation of special status in Kashmir enjoys.

Comments

Popular posts from this blog

गरुड़ पुराण कथा और सार – Garud Puran in Hindi

गरुड़ पुराण कथा और सार – Garud Puran in Hindi गरुड़ पुराण कथा – Garud Puran in Hindi गरुड़ पुराण  हिन्दू धर्म के प्रसिद्ध वेद पुराण में से एक है। वैष्णव सम्प्रदाय से सम्बन्धित गरुण पुराण हिन्दू धर्म में मृत्यु के बाद सद्गति प्रदान करने वाला माना जाता है। इसलिये सनातन हिन्दू धर्म में मृत्यु के बाद ‘गरुड पुराण’ के श्रवण का प्रावधान है। इस पुराण के अधिष्ठातृ देव भगवान विष्णु  हैं। अठारह पुराणों में ‘गरुड़ महापुराण’ का अपना एक विशेष महत्व है। क्योंकि इसके देव स्वयं विष्णु माने जाते हैं, इसीलिए यह वैष्णव पुराण है। गरुड़ पुराण के अनुसार हमारे कर्मों का फल हमें हमारे जीवन में तो मिलता ही है, परंतु मरने के बाद भी कार्यों का अच्छा-बुरा फल मिलता है। इसी वजह से इस ज्ञान को प्राप्त करने के लिए घर के किसी सदस्य की मृत्यु के बाद का अवसर निर्धारित किया गया, ताकि उस समय हम जन्म-मृत्यु से जुड़े सभी सत्य जान सके और मृत्यु वश बिछडऩे वाले सदस्य का दुख कम हो सके। भगवान विष्णु की भक्ति |  Devotion to Lord Vishnu वास्तविक तथ्य यह है कि ‘गरुड़ पुराण’ में भगवान विष्णु ...

What is OLAP (Online Analytical Processing): Cube, Operations & Types

What is OLAP (Online Analytical Processing): Cube, Operations & Types What is Online Analytical Processing? OLAP is a category of software that allows users to analyze information from multiple database systems at the same time. It is a technology that enables analysts to extract and view business data from different points of view. OLAP stands for Online Analytical Processing. Analysts frequently need to group, aggregate and join data. These operations in relational databases are resource intensive. With OLAP data can be pre-calculated and pre-aggregated, making analysis faster. OLAP databases are divided into one or more cubes. The cubes are designed in such a way that creating and viewing reports become easy. In this tutorial, you will learn- What is Online Analytical Processing? OLAP cube Basic analytical operations of OLAP Types of OLAP systems ROLAP MOLAP Hybrid OLAP Advantages of OLAP Disadvantages of OLAP OLAP cube: At the core of the...

Science, Tech, Math › Science Laws of Thermodynamics as Related to Biology Share Flipboard Email Energy and Thermodynamics Mikael Häggström/Public Domain by Regina Bailey Updated July 09, 2019 The laws of thermodynamics are important unifying principles of biology. These principles govern the chemical processes (metabolism) in all biological organisms. The First Law of Thermodynamics, also known ​as the law of conservation of energy, states that energy can neither be created nor destroyed. It may change from one form to another, but the energy in a closed system remains constant. The Second Law of Thermodynamics states that when energy is transferred, there will be less energy available at the end of the transfer process than at the beginning. Due to entropy, which is the measure of disorder in a closed system, all of the available energy will not be useful to the organism. Entropy increases as energy is transferred. In addition to the laws of thermodynamics, the cell theory, gene theory, evolution, and homeostasis form the basic principles that are the foundation for the study of life. First Law of Thermodynamics in Biological Systems All biological organisms require energy to survive. In a closed system, such as the universe, this energy is not consumed but transformed from one form to another. Cells, for example, perform a number of important processes. These processes require energy. In photosynthesis, the energy is supplied by the sun. Light energy is absorbed by cells in plant leaves and converted to chemical energy. The chemical energy is stored in the form of glucose, which is used to form complex carbohydrates necessary to build plant mass. The energy stored in glucose can also be released through cellular respiration. This process allows plant and animal organisms to access the energy stored in carbohydrates, lipids, and other macromolecules through the production of ATP. This energy is needed to perform cell functions such as DNA replication, mitosis, meiosis, cell movement, endocytosis, exocytosis, and apoptosis. Second Law of Thermodynamics in Biological Systems As with other biological processes, the transfer of energy is not 100 percent efficient. In photosynthesis, for example, not all of the light energy is absorbed by the plant. Some energy is reflected and some is lost as heat. The loss of energy to the surrounding environment results in an increase of disorder or entropy. Unlike plants and other photosynthetic organisms, animals cannot generate energy directly from the sunlight. They must consume plants or other animal organisms for energy. The higher up an organism is on the food chain, the less available energy it receives from its food sources. Much of this energy is lost during metabolic processes performed by the producers and primary consumers that are eaten. Therefore, much less energy is available for organisms at higher trophic levels. (Trophic levels are groups that help ecologists understand the specific role of all living things in the ecosystem.) The lower the available energy, the less number of organisms can be supported. This is why there are more producers than consumers in an ecosystem. Living systems require constant energy input to maintain their highly ordered state. Cells, for example, are highly ordered and have low entropy. In the process of maintaining this order, some energy is lost to the surroundings or transformed. So while cells are ordered, the processes performed to maintain that order result in an increase in entropy in the cell's/organism's surroundings. The transfer of energy causes entropy in the universe to increase.

Laws of Thermodynamics as Related to Biology Mikael Häggström/Public Domain The laws of thermodynamics are important unifying principles of biology. These principles govern the chemical processes (metabolism) in all biological organisms. The First Law of Thermodynamics, also known ​as the law of conservation of energy, states that energy can neither be created nor destroyed. It may change from one form to another, but the energy in a closed system remains constant. The Second Law of Thermodynamics states that when energy is transferred, there will be less energy available at the end of the transfer process than at the beginning. Due to entropy, which is the measure of disorder in a closed system, all of the available energy will not be useful to the organism. Entropy increases as energy is transferred. In addition to the laws of thermodynamics, the cell theory, gene theory, evolution, and homeostasis form the basic princi...